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analyze the simulated data. The results revealed that (1) wnile
synergisms produce notable effects throughout the range of intercorrelation
values, the most striking influence was found for negative intercorrelazions,
(2) descriptive indices (such as R2) were relatively unrevealing about :h&
presence of synergisms, (3) in contrast, inferential indices (particular-y
the hierarchical test) were much more revealing, and (4) there were conicerable
between-stimulus differences in terms of how easily synergisms could be
accurately detected. These findings imply that, because synergisms .avc een
frequently overlooked by investigators, they should be specifically testes
for in future research using nonorthogonal designs.
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Detection of Multiplicative Synergism- in

Simulated Data for Nonorthogonal Designs:

What Lies Beyond Linearity?

According to Webster's (1976) dictionary, a synergism is an action

"such that the total effect is greater than the sum of the effects taken

independently." In psychological terms, synergisms are usualiy rre rt ..

by a multiplicative interaction between two or more variables. For instana_,

R = f (A x B), (:)

where the response R is a function of the multiplicative combination of

variables A and B. A number of behavioral models and theories take the

of Equation 1. Examples of synergisms in psychology can be found in learning

(performance = drive x habit strength), industrial (performance = ability x

motivation), and social (level of aspiration = desirability of goal x expectancy

of success). For a more complete discussion of the importance of synergism,

along with numerous psychological examples, see the review by Shanteau (1981).

In experimental designs which are orthogonal, such as factorial designs,

detection of a mulitplicative synergism is relatively straightforward. In

analysis of variance terms, a synergism will lead to an interaction. More-

over, the interaction will take a specific bilinear form, i.e., the data

will plot as a diverging fan of lines. While several statistical procedures

are available, the most generally useful technique is to evalute the linear x

linear component of the interaction. The various procedures are discussea

and compared in Shanteau (1978, 1981).

In contrast to the orthogonal case, the detection of synergisms in

nonorthogonal designs is much less clear cut. Nonorthogonal designs typically

arise when the levels of variables are assigned in some non-controlled fashion,

e.g., as in a representative design Brunswik, 1956). Typically, this
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means that the variables wili be int, rcorrelatcd WiLlt aci ot,.r. ..

problems caused by such intercorrcl;tions are w]l1 recognized in tl.c,

literature on multiple-r,:gre.sion analyses (e.g. , Darlington, 1969).

However, the difficulties introduced by intercorrelation in the detection of

synergisms have yet to be analyzed. Therefore, the purpose of the present

study is to evaluate the effects of synergisms on nonorthogonal design-.

Research Strategy

While it would be desirable to use real data sets for analyzing y7r.er:isms,

this is impractical on two grounds: (a) It is difficult, if not impossibLe,

to know in advance whether a synergism does or does not exist in a given

set of data. Without such knowledge, any further analyses would be fruitless

for present purposes. (b) There is no feasible way to obtain data sets which

correspond to all the conditions which would be desirable to examine. More-

over, any real data sets are likely to have been influenced by a variety

of other unknown and probably idiosyncratic factors.

Because of these problems, an alternative research strategy was developed

based on the construction of simulated data sets There are three note-

worthy features to such data sets: First, the presence (or absence) of a

synergism can be built into simulated data. That is, a synergism can be

specifically included or excluded in the simulated data-generating model.

Thus, the "truth" about the simulated data is known a priori.

Second, various properties of an expe.rimental design can be easily

and systematically manipulated with simulated data. For instance, the

degree of cue intercorrelation between two variables can be varied from

high positive to high negative with numerous steps in between. Other proper-

ties, such as the size of the design can also be easily specified. There-
' fore, an advantage of simulated data is that ,otentially important properties

of the design can be varied in predetermined ways.
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Third, nonorthogonal designs with the same properties, can be producva

in many different ways. That is, a variety of stimulus sets can have tic

same degree of intercorrelation values, etc. This lack of uniqueness in

nonorthogonal designs makes it desirable to compare alternative stimulus

sets with the same correlations. Thus, simulated data sets allow a direct

way to evaluate the consistency of any results involving synergisas.

Of course, the use of simulations also has its disadvantages. Scmc mL

these will be taken up in more detail in the Discussion. - rts Polnc,

however, it is worth emphasizing that every effort was made to produce tit.L

sets which "look like" real data. Towards this end, a variety of moCulb

were used which resemble those which are known to be used by subjects. in

addition, error was added to the data at levels which are similar to thc

values found in typical response sets. In short, the simulated data had

all the outward appearances of realistic data.

The remaining sections of the paper begin with a detailed descripLion

of the simulation technique used. This also includes a consideration of

the procedures, analyses, etc., employed. Then the results from the analyses

of over 14,000 simulated data sets are presented. Finally, the last section

contains a discussion of the implications, as well as qualifications, of thc

present results.

Simulation Approach

The basic goal behind the present research approach was to separate a

typical experimental study into three stages and to simulate each stage

separately. As shown in Table 1, these stages correspond to the construction

of an experimental design (the environment), the formation of the responses

according to some strategy (the subject), and the analysis and interpretazion

of the results (the experimenter). Since independent algorithms were constructed

for each stage, the simulation techniques will be considered separately.
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Insert Table 1 about here

Environmental Simulation

The experimental design specifies the stimulus environmen: n which r,-

search evidence is collected. Obviously, a subject can only provide

to the particular stimulus combinations presented. Thi- means that :he

experimental design can play a crucial role in determining whthor a

specific relation, such as a synergism, can or cannot be detected in

In the present case, the construction of each stimulus design invoix->..

a two-step process. The first step was based on tentatively constructing a

stimulus set intended to reflect various prespecified conditions. The

second step was based on examining the tentative set to see if, in fact,

the desired conditions had been met. For instance, if a prespecifie& leve

of cue intercorrelation was desired, then the observed intercorrelation value

for a tentative set was compared to the desired value. If the stimulus set

met all the conditions, then it was used. If not, and if minor adjustments

did not produce a satisfactory stimulus set, then the set was discarded and

the process started over. Both of these steps will now be considered in more

detail.

Cue generation. A computer algorithm incorporated in the program

CUEGEN (see the Appendix for details) was used to construct sets of nonor:hcg-

onal stimuli with specifiable properties. Some of these properties were

arbitrarily fixed for purposes of this research project, while others were

varied. The following four properties were held constant across all stimuius

sets: (1) Only two-cue stimulus sets were used (see Table 2 for an examp i).

This allowed complete freedom to vary intercorrelations from +1 to -1; the
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use of three or morc' cues would have reduced the range of correlcion v.u,-.

possible. (2) The range of the cue values was restricte from 0 to i00.

This restriction wa. puroly for conveniencc and involves no loss of general-Cy.

(3) A uniform sampling oistribution was specified for each cue. Although

other distributions such as normal were considered, it proved to be easivr

to construct appropriate stimulus sets using the uniform. (4) The .:ean .ni

standard deviation were specified to be 50.0 and 20.0, respectively. As

the case for the other fixed properties, these arbitrary va ies appearL_

to have little impact on the pattern of results observed.

Insert Table 2 about here

There were three properties which were varied systematica2Av in tIAi

construction of the stimulus sets: (1) The intercorrelation values were

specified to be +.90, +.75, +.50, +.25, .00, -.25, -.50, -.75, and -.90.

These values both covered the range of possible intercorrelations and were

reasonably dense and well-spaced. (2) The number of stimuli in each stimulus

set was specified to be either 25 or 100. These numbers are representative

of what is typically used in "small" and "large" nonorthogonal designs.

(3) Nine independent stimulus sets were generated for each combination of

correlation value and stimulus set size. There were thus a total of 9

(intercorrelations) x 2 (stimulus set sizes) x 9 (independent sets) = 162

stimulus sets generated.

Testing the stimulus sets. Each constructed set was subjected to a

series of tests to check whether it was close to the desired properties,

such as the specified intercorrelation value. Only if a stimulus set

satisfied all the tests was it kept. Otherwise, the cue values were randomly

9
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.d1istcd ar tidw aeLt rcpeaticd. If .;ter five adjusrc,nLs , the -1 L

was still not satisfactory, then it was discarded and a acw sc w.is

using Ll e CUEGEN program.

There were four types of tests that each stimulus set had to pass at

the .05 level in order to be acceptable: (1) The intercorreiati ":e)twccen

the cue values (i.e., betweer. paired entries in Table 2) had zo 'c cnc , -

K cantly different from the desired value. (2) The mean f3r each ce ------

(i.e., each column in Table 2) had to show nonsignificant ,

to be nonsignificantly different from the specified valve. (4) 7in_

the distribution of values for each cue separately had to approach tfu

uniform distribution. (To make this test, each distribution was dividec

into segments and deviations from the uniform were computeu fror each ; -.-

A chi-square procedure was then used to test for any discrepancies.)

In all, each constructed stimulus set had to pass seven tests: one for

the intercorrelation value and two each for means, standard deviations, and

uniform distribution. In practice, almost all stimulus sets satisfied the

intercorrelation restriction. Tests on means and standard deviations result d

in a few rejected sets. However, the distribution test was the no'

demanding and produced by far the highest proportion of rejected sets.

However, it was possible in all cases to construct nine independent stimulus

sets which satisfied each of the tests.

Subject Simulation

To simulate the subjects' behavior in an experiment, a two-step proccsJ

was followed. First, a model was specified, e.g., multiplying, for each

simulated subject. This model represents the "truth" to be detected by he
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subsequent analysis. Second, randon. error was JntrcG,1c

realistic responses. Each of these two steps will now Oc cU:,.m.c -. i. ... -.

detail.

Model. Three different models were used in Lhcse simulnations. Th"

first was a multiplying model in which the two cues, X-, X, ';: c:.
i

as fo lows:

Y m= X1 X X2.

For the example shown in Table 2, the first pair of vu... X...... .

67.4 and 44.3, respectively. The product, Y , wouic e 67.4 x 44.3 3

This model represents a "pure synergism" in the form of cobss-L;rc .

The second model involved adding- the two cues:

Xa X1 +X 2

"
For the first pair of values inTable 2, Y would be 67.4 + 44.3 111.7.

a

model provides a baseline or control condition in which a synergism is knovn

not to exist.

The third model was a combination adding-multiplying model:

Yc = X1 
+ X2 + (X1 x X2). (4)

For the example above, Y would be 67.4 + 44.3 + (67.4 x 44.3) = 3097.5.c

This combination model allows examination of a synergism in the conzcxt -:

adding process.

Error. To produce realistic data, error obviously must be introc0.

In considering error, two major choices have to be made which corresponc

the location and the size of the error term. in regard to location, L:.

can be added either before or after the cue values are combined in Equatio:.

2 to 4. Introducing error before the combination process corresponds tc
I

variability produced by stimulus or perceptual uncertainty. Introducing

error after the combination corresponds to v-1ability caused by response or

output uncertainty.
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!or two rerson:;, it wa d'c ide ;...

stimulus valusC;. Thlar i:;, random ra-, r , ,I. was . ,

Equations 2 to 4 so th:it the s:autd a, Y , c,,n a--c .:.-:c as

Y, = Y + E. (5}

The firs: reason is that statistical mode : typically ao,-.i a

additive error. Sfic, one of the Ao'Is of this study wa,- co cj . v

statistical techniques, it seemed preferable to make thc data co i.,oen ,s4.

assumptions made by the statistical analyses.

A second reason is that there i:s some limited empkricai su.ort r--

error-after iocation. Shanteau (1976) examinec wizhin-ce-il var a ..

in a task known to produce synergistic behavior, i.e., a garbling task.

The cell variances were found to be unrelated to the cell mearns; this

consistent with Equation 5, but inconsistent with a before-combination c'

error.

The ocl-er major choice involves the size of the error term to be ac oed.

It should be clear, since the ranges of the Y values for the three

models are quite different, that the same size error crnnot be used for all

three models. Instead, the size of the error was calibrated individually

to reflect each set of Y values.6 Thus, the Y' values were produced by adding

to each Y a random normal error value, with mean zero and standard deviao-.o;

equal to c. After trial-and-error exploration, it was found that a c valee

equal to one-half of the coefficient-of-variation for the Y values produc<'

the most reasonable looking results, i.e., c = x Standard Deviation tm:.

A variety of other ways of defining c were explored, and in general the -

of the results did not appear to depend on the definition of c used. (c::.

additional comments on issues related to error appear in the Discussion).

- Using the a.roach outlined above, ten i-dependent data sets werc Aer.ratcd

for each stimulus set. In other words, from each set of Y values, different
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combnations of rando;,m error wcru addIed to form ten set uf Y' -... n

summary, ten simulatod suhjc.cts were created for eacI, f te Y .- ts of

stimu lus values.

Experimenter Simulation

For present purposes, the experi:ment.r's role is that of analyzing ar.,

comparing the results for various statistical methods. Sincc thne r-- arc

variety of methods which can be used, the experimenter's questiun aecomc:

which of the various statistical teclniques is most sensic_ 'c- :o Le p

(or absence) of a synergism? Before dealing with this question, howevar, it

will first be necessary to review the overaill multiple-regression app:o_¢c.

used.

Multiple-regression analysis. Each of the simulated subjects (i.e.,

each set of Y' values) was analyzed by three types of multiple-regrest;on

models. These models correspond to the three models used to create thu

data in Equations 2, 3, and 4. Thus, each data set was analyzed using .

multiplicative or pure cross-product regression model:

= al (X1 x X2), (6)

where Ym is a predicted value derived from the product of the cue values

X1 and X Similarly each data set was analyzed using an additive or line"r

regression model:

Ya 1 X1 + 2 2' 

(72
where the predicted value Yq is obtained from a weighted sum of the stir:,

values. Finally each data set was analyzed by a multilinear (combincd

additive-multiplicative) regression model:

Yc =1 +  X 2 
+ 

3 (Xl x X2

where the predicted Y value is a weighted sum of the various terms.

!C

IJ
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In the actual analyses, ordinary least squares procedure:.

obtain estimatcs of the $ weiphts. These estimates minimize t:.e d'scze,

between the original Y' values and the derived Y values. The raw re'-re, %.C

analyses were performed on the data for each simulated subject. For

convenience, however, the results have been averaged across the ten sutlcZa

generated for each stimulus set. (As an aside, the zero intercept ind _L

weight, P, have been omitted for clarity from Equations 6 to 8. These c -

were invariably near zero and contributed nothing to the in :rp:ctanic.;

results.)

Statistical indices. Based on the multiple-regression analyses, a nu>..

of statistical measures were computed. These measures are considerec i1

some detail in the Appendix. However, because the results for many of thu

indices were redundant, only the most relevant measures will be considerec

in the results. These indices, which are listed across the too of Tables

3 and 4, will be described as necessary in the Results section.

Results

Since 14,580 separate multiple-regression analyses were run, it is

obviously necessary to be highly selective in presenting results. For

brevity, graphical summaries will be presented of just the most relevant

statistical results. In addition, only short descriptions will be given of

the indices (see the Appendix for a more complete description

of the statistical procedures).

Descriptive Indices

The squared multiple-correlation value, R2 , provides a standard measure

of the variance-accounted-for by a regression model. Figure 1 shows the

average R2 values for the fit of an additive (linear) regression model

(Equation 7); the left panel gives the results for the 25-stimulus condiLion

I ..



Detection of ~re~
12

and the righL Ipw,.c I Jvos t1ho rusult. for i-he 0s h>~cii~ .

three lines in each panel correspond to the three ~.-ocai&

Equations 2 to 4, wdith L11, iiiio lo vel s of cue intercorreL non liste aba11

the horizontal axis. Each of the plotted values in FVigure 1 is the aec~

of 90 multiple-regression analyses: ten simulated subjects in each of rninc

Stimulus Sets.

Insert Figure I about here

Three general observations follow directly from this and the oth~er

* figures. First, the results appear to be reasonably smooth and lawful.

Moreover, several treads both between curves and across correlation valuve

are easily discernable. Thus, at least at a surface level, the present

* simulation approach has produced orderly data.

Second, the multiplying data model (Equation 2) and the adding-multiplying

model (Equation 4) lead to essentially identical results. With few exceptions,

the statistical indices Produced by these two models are virtually indistin.-

guishable. This hsuggeSt; that what a synergism is combined with is not as

important as tr.c fa~ct t-xjt a synerg;,i., is present.

Third, the jdding 6ata mrodel (&luation 3) led to results which are

consistently lower than the results for the other two data-generating

In sot;-e circumstances, this might be expected since the adding model servt

as a baseline fur many of the analyses. For indices such as !R, howeve:,

the lower values were unexpect -1. The reason for this resui,-

apparently ies in the procedure used to add error to the simu'-la n.

Clia heCOefft iC nt Of variation to determine the size of the error s5cc:

to haive it roduced, relatively more error into the adding data than into t*he,
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other two data models. Hlenco, the A 2 ar- proportionally Iowa:,. t

this difference does not influence any of the major findings reportce nurc

(although it does suggest that some attention be given Lo the issue of

compatiole error values in any future simulation research).
2

One unique finding in Figure 1 is that the results in the two panels

are remarkably similar. For instance, the curves for the synergistic

are nearly straight for positive intercorrelations with a gradual increas-c -0

around .70. Thus, for positively correlated cues, an ad . re-ve

regression model seemingly produces a stable fit to synergistic data.

For negative intercorrelations, on the other hand, the results reve

quite a different picture. In both panels, there is a sharp "elbow" in thc

top curves with the R2 values dropping down to around .20. That is, the fit

of a linear regression model to synergistic data is very much influenced

by the degree of negative intercorrelation. (The dip in the curves around .00

intercorrelation in the right panel will be taken up later.)

Figure 2 shows the R2 values for the fit of a multilinear regression

model (Equation 8) to the same data. The two panels, representing the rcsulzs

for 25 and 100 stimulus cases, respectively, are also quite similar. The

top curves are relatively flat for positive intercorrelations with an

asymptote of around .75. For negative intercorrelations, there is again ;an

elbow in the R2 values. Compared to Figure 1, the top curves are consisctently

higher; the fit to the adding data, however, is virtually unchanged.

Insert Figure 2 about here

A more revealing view of the difference between Figures 1 and 2 can be

2
obtained by computing the improvement in R 2ained from a multilinear regression
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model over an additive model. These AR2 values are shown in }ur ?. As

before, the two panels, for 25 and 100 stimulus cases, are fairly similar.

For positive intercorrelations, the AR2 values stabilize at about .05, I.c.,

the improvement in variance-accounted-for when going from an additive to

a multilinear model is almost constant. For negative intercorrelations,

however, the improvement in fit increases dramatically with higher nu ti'.L.i

values. At the most extreme, the AR2 valuus approach .25 when r --.90

right panel.

Insert Figure 3 about here

To summarize, the R 2 results show that a linear regresssion model

appears to do reasonably well in describing synergistic data when the cues

are positively correlated. But, when the "correct" multilinear regression

model is used, there is an improvement of about .05 in the R2 values. However,

when the cues are negatively correlated, a linear regression model is

definitely inferior to a multilinear regression model. Moreover, the

larger the negative intercorrelation, the greater the improvement by using

the "correct" regression model.

Beyond variance-accounted-for measures, the most frequently used

descriptive indices are the regression weights. Figure 4 shows the

standardized regression (Beta) weights for the crossproduct terms in Equat n

8. Except for a falloff with highly negative cue correlations, the Beta

weights are relatively sizable. The values range from around .65 for

highly negative intercorrelations in the left panel to nearly .90 for

- highly positive intercorrelations in the right panel.

For comparative purposes, the Beta weigh for the cross product of a

multilinear model fit to adding data are shown in the middle of the figure.
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As expected, these v.iluc-. arc unifor.ly nar ze: ,. 'iu., L ..

weights provide sui,5,stive indicatiwis th.,t the pr-s;encc of a

does make a consistent difference.

insert Figure 4 about here

While descriptive indices can be quite useful in summarizing oat., ci-.<,

are of course inherently incapable of saying whether a syn.,-gis. is .

or not. That is, they cannot be used to answer yes-no questions. TherefCre,

such indices can be quite deceptive if, say, a high R2 value is used to

support a linear regression model. There is never any way of knowing wh:.,e.

the observed R2 value is good, bad, or mediocre. For a more complete discusolon

of this issue, see Anderson and Shanteau (1977; also see Shanteau, 1977).

The appropriate way to deal with such issues is to employ inferential

test statistics. Accordingly, the next section will deal with various

inferential indices designed to detect the presence of synergisms.

Inferential Indices

Besides providing descriptive information, the Beta weights for the

crossproduct terms can also be tested for significance. The proportions

of significant Beta weights (out of 90 for each point) are plotted in Figure

5. For 100 stimulus cases, the right panel shows that the weights are

uniformly significant. In contrast, the left panel for 25 cases reveals

that only highly negative intercorrelations produced proportions near one.

For positive intercorrelations, the proportions drop to near .75. Thus, thc

results for regression weights reveal that they are generally sensitive tc

the presence of a synergism. However, this sensitivity is reduced when

25 stimulus cases are used and when the intercorrelations are positive.
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Insert Figure 5 about here

There are some well-known problems with using regression weights to

examine the importance of terms such as crossproducts. One problem is

that when the cues are Intercorrelated, the order in which the ter7.IS are

examined can influence the magnitude of a weight (Darlington, 1969).

Also, the scaling of the stimulus metric can influence tht ipparent Lrt)rcn

of even standardized weights (Anderson & Shanteau, 1977). While such prcc-ems

were controlled for in the present simulations, these shortcomings would

generally make regression weights impractical for testing synergisms in real

data.

One procedure which avoids these problems is the hierarchical test

proposed by Cohen and Cohen (1975). Briefly, this procedure involves testing

the LR2 presented in Figure 3 with an F-ratio. As can be seen in Figure 6,

the F values are considerably higher for the 100 stimulus cases in the right

panel. Moreover, there is a pronounced decline in the F values as the

intercorrelations go from negative to positive.

Insert Figure 6 about here

When these F values are tested for significance, the proportions for the

100 stimulus cases in Figure 7 are uniformly at 1.0. However, the proportions

for 25 cases in the left panel range between .75 and 1.0. In addition,

positive intercorrelations are Tess likely to produce significant results

than negative intercorrelations.
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Insert Figure 7 about here

On the whole, the hierarchical procedure is quite sensitive to the

presence of a -yncrg;itm, especially in the larger stimulus set. in *iz sjmacr

set, there is a slightly higher chance of detecting synergisn6 wh, i t..

cues are negatively correlated. By and large, however, the hierarchic~l-.

results were little affected by any of the present environ,-nt-al M.;ni#Pl.1__:..

While the hierarchical test was quite good at detecting synergisms, it

is not capable of saying whether there is more involved than simple bilinearigy.

That is, showing that a crossproduct is present does not rule out the presence

of other more complex terms. One way to check that is to examine the lack-

of-fit after the additive and multiplicative terms have been extracted. As

described by Draper and Smith (1966), F-ratios for lack-of-fit can be used

to test the unaccounted-for-variance. The average F-ratios are shown in

Figure 8 for the 25 and 100 stimulus cases, respectively. The curve

shapes are for the most part similar across the two panels, with the largest

F-ratio found for negative intercorrelations.

Insert Figure 8 about here

The proportions of F-ratio that were significant are shown in Figure 9.

While the proportions are considerably higher for the 100 stimulus cases,

the results are uniformly greater than the chance levels observed for the

adding model. Of course, since deviations from multilinearity are being
9

tested, and since the synergistic models contain no such deviations, the

proportions should all be at the chance level. It would thus appear that
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this procedure Iomis to an inflated type I error rate. ased " ,: :lrc-..

results, the lack-of-fit test is apparently overly sensitive to noncx.gtr..

deviations and therefore should not be used.

n sInsert Figure 9 about here

Post-Hoc Analyses

Aside from the planned analyses reported to this poin. , several adritional

analyses were performed based on some unanticipated results. These involved

the surprising influence of some atypical stimulus sets and the anomalous

findings observed with zero-intercorrelation sets.

Between-set differences. In the results presented so far, the findings

have been averaged over the nine stimulus sets constructed for each incercor-

relation condition. Since particular efforts were made to ensure the

comparability of these sets, there was little reason to expect any sizable

differences between them. Nevertheless, there were some notable between-

set differences in the values for various indices.

One of the most striking examples is summarized in Table 3; the results

were taken from the .00 intercorrelation/100-stimulus-case condition with the

data generated by the adding-multiplying model (Equation 4). The row

entries present the results for each of the nine constructed stimulus set".

In the first column, the observed cue intercorrelation values can be secn

to be extremely close to the prespecified .00 value. Although, not s'hXown,

the means, standard deviations, and distributions were also quite close tc

their prespecified values (see Table 2 for an example). The fit of the

linear regression model (Equation 7) led to average R2 values in the

second column which range from .61 to .66--with one notable exception.
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The fifth sLinailus Set has an R2 value of only .37. A similar cibcrupancy

can be observed in the third column for the R2 values from the fit of a

multilinear mode (Equation 8).

Insert Table 3 about here

The average Beta weights for the crossproduct ter-" .re g;vcn in ceiz.

four with the number significant (out of 10) in parentheses. The aver~.

weight falls between .77 and .88, again with the exception of the fifth

set which has a value of .66. Even larger differences can be seen for

the average hierarchical F-ratios in column five and the lack-of-fit

F-ratios in column six. In both cases, the results for the fifth stimul .

set are far out of line from the other eight stimulus sets.

A more typical set of data is presented in Table 4 for -.90 correlation/

100-stimulus-case condition. For these results, the eighth stimulus set,

and to a lesser extent the fourth set, stand apart. As an example, the

R2 values for the multilinear regression model range from .45 to .60 with

the exception of .30 for the eighth set and .34 for the fourth. Most of

the other conditions, although not shown to save space, produced results

similar to Table 4 in that one or two of the stimulus sets stood out from

the others.

Insert Table 4 about here

In an effort to localize the source of these discrepancies, the means

and standard deviations of the simulated data were computed. As can be seen

from the averages reported in column seven o. Tables 3 and 4, the means are

-I -
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quite similar across all the stimulu; sets. However, the sLn ..

in column eight are another matter. The values are markedly .fTaicr r

the fifth set in Table 3 and the eighth set in Table 4. That is, tho rang,.

variability of the data generated for these sets is compressed relative to

the other stimulus sets. This in turn apparently producec smaller values

for various statistical indices. In short, it was more difficuT. to Gc:c

the presence of a synergism in the data generated from these stimulus

Obviously, this would make the generalizability of the res.ts obtainea fro

these sets highly suspect.

Zero-correlation results. In several of the figures, the .00 inter-

correlation/100-stimulus-case condition appears to have produced anomaio-;

results. For instance, in Figures 1 and 2 the top curves in the right pane-s

show a marked dip for the .00 intercorrelation value. While the reason

for this anomaly is not entirely clear, .00 intercorrelated stimulus sets

have also been observed to be unusual in other studies (Stewart, 1980).

One contributing factor may be the relative homogeneity of the stimulus

sets with .00 intercorrelation. In the first column of Table 3, for instance,

the observed intercorrelation values are all extremely close to .00.

Such close similarity was not observed for any of the other intercorrelation

conditions. In Table 4, for example, the observed intercorrelation values

range from -.85 to -.93. It would thus appear in the .00 intercorrelation

condition, the stimulus sets were much closer to criterion value than was

the case elsewhere. It would therefore appear that the greater homogeneity

of the .00 intercorrelation sets apparently accentuated any differences frc

the other conditions.

Since the stimulus sets in the .00 intercorrelation are so similar, this

emphasizes all the more the uniqueness of thb fifth set in Table 3. That is,
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of all the intercorrelation conditions, this wou' sev to1-C L. .L -L

likely to produce an tnan1olu ; stia;ulus sut. in f.)ct, 'I-. flfth sut,

with a value of .01, was the only one not to have an inttrcorrelatiC-

value of .00. It appears that even this very slight deviation in the fifil

set may have contributed to the anomalous results. This finding su,;gests

that atypical stimulus sets can occur even in the most unexpected .

controlled situations.

Discussion

There are three noteworthy findings in the present study. First,

multiplicative synergisms do make a major difference in nonorthogonal

designs. When trying to account for synergistic data, it matters a grc:.:

deal whether a "correct" or an "incorrect" regression model is used. W .Ie

the effect is more pronounced for negative intercorrelations, the inpact

of a synergism can be seen throughout the range of cue intercorrelations.

Thus, investigators who continue to ignore the possibility of synergisms

may be overlooking some potentially very important relationships.

Second, much of what might be considered common practice in the analysis

of nonorthogonal data is called into question by the present results. For

instance, some of the indices regularly used to analyze judgmental data,

e.g., R2, were found to be insensitive to the presence of synergisms. On

the other hand, there were some less common measures which were sensitive to

synergisms, e.g., AR2 , and which could be routinely incorporated into jud.; ent

analyses. In addition, a rather surprising result was that some stimulus

cue sets were better than others at revealing the presence of synergism, . ce

all sets had to meet some rather stringent qualification requirements, this

suggests that there may be some unappreciated difficulties in generalizin,

results obtained from nonorthogonal designs.
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"in I ly, tCIL' t;IUSS 0 o ti c )rc,-,nt ,,imulaL± o w L

on several grounds. On the one hand, the approach proved ('L.Itc fA ,.:

investigating sooe isslict,. which would have been difficuiL , if -ot inj ..

to study empirically. On the other hand, several new research issue>c wcrj

raised which can be addressed in empirical investigations. For instance,

the roie of error in judgmental data might becone of special concr,. ±ml

future analyses. Although not without limitations, the iuic.o ..

tion of environmental conditions, subject behavior, an-' re..

can provide a fruitful basis for investigating many other issues. Thu

implications of each of these three findings will be taken up in onc :

of the Discussion.

The impact of Synergisms

The present results are quite clear in showing that the presence of a

synergism does make a difference. Regardless of the environmental concizi..>

investigated, there was always an improvement in the fit of a multilinear

regression model over a linear model for synergistic data. While the size

of the improvement did vary depending on which indices and conditions w. :c

used, there was not a single occasional in any of the present simulations

where an improvement failed to appear.

Cue intercorrelations. The pervasiveness of the influence of synergisa

was somewhat unexpected. Perhaps most surprising was the persistent effect

found for the high positive intercorrelation conditions. When cues are cI-.>.. -.

bound together, e.g., by a correlation of +.90, the fit might be expectca: .

be insensitive to the form of the regression model. That is, for highly

correlated cues, high values will follow from high cues and low values wi,.

follow from low cues regardless of whether a linear or a multilinear mode.

used. Moreover, the degree of insensitivity might be expected to increase as

the correlation approaches unity.
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Instead, Che present results revealed an almost constant dJ , -c

between the fit of linear and multilinear regression -oduis for pCSiL.iVe

intercorrelations. It would appear that the degree of intcrcorruc1

when it is Positive, is of little rele-ancu. Thus, up to the limits a:

the present simulation analyses, the influence of a synergism appears t6

be quite consistent for positive cue correlations.

Some rather curious results appeared for the zero-intercorreztion

condition. Basically, the results are quite similar to tho. oerved for

positive correlations. However, several of the figures revealed "dips"

and other discontinuities for zero intercorrelations. Vaile the sourc,

this irregularity is not entirely understood, the important result is nuver-

theless unchanged: synergisms have just as much effect of this interco>r2_.-

tion condition as in any positive condition.

A rather different picture emerges for negative cue intercorrelatio.m.

The greater the size of the negative intercorrelation, the greater the

disparity between the fit of linear and multilinear models to synergistic

data. That is, the size of the negative correlation influenced how much

was lost by ignoring the presence of a synergism.

While some difference between positive and negative intercorrelations

had been anticipated, the magnitude of the difference was not. With high

negative correlations, the discrepancy between the fit of linear and

multilinear models approaches, and in some cases even exceeds, the fit of

the linear model. That is, the variance-accounted-for can actually be

doubled by shifting from a linear to a multilinear regression model. 7c

of the disparity between these results and the general acceptance of linear

models, the role of such models will next be considered in some depth.

Linear models in decision making. A great deal of knowledge has been

accumulated about the use of linear models in summarizing human judgments.
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Much of wh ,; has beon found sugppst - thaL neither corruct r.- n

correct weights are important for gctting, an adequate dC4cri, n o.'- ..

data (Slovic, Fischhoff, & Lichtenstein, 2977). The present rcsultI 1~r

synergistic data would imply the need for some modifications in this view.

*(The issue of weights will be taken up separately below.)

"There are a number of papers in the Literature whc'. *. "...

linear models can do a good job of describing nonaddir1ve data 'c.

Yntema & Torgerson, 1961). In perhaps the best known of . '.,

Dawes and Corrigan (1974, p. 98) concludea that "linear moaels are goo.

approximations to all multivariate nodels that are conditiona-iy r~r~u:.>

in each predictor variable.'"4  The authors go on to add that the linear

approximations improve with increasing error. hence, there has b-en a

widespread feeling that distinguishing model form is unimportant for most

multiple regression analyses of judgmental data. Indeed, -- iny of the

approaches which use regression procedures, such as the Len's model

approach (Hammond, Stewart, Brehmer, & Steinmann, 1975), routinely ignore

anything but a linear regression model.

In contrast, Anderson and Shanteau (1977) cautioned against the rout'n-

use of linear models. Among other shortcomings, they offe d an exanple

of multiplying data which satisfies conditional monotonicity but which .-

clearly nonlinear. While a best-fitting linear model correlated .885 .

the data, the fit was far from adequate. On a 100-point scale, the linei,

model was providing estimates which ranged from -25 to -25 for a d.....

of 0. The basic problem was that the data displayed a diverging patte:n .

lines and a linear model can only produce parallel lines. In short, .

model was not adequate to describe multiplying data.

I . . . .. . . . . . . . . . . . . .1 1. . .I I I I I I I I I I I I I I I I . . . .. .
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Andcriurn and sm (c977) wen: on to point 011 L.t

can be u-seful in appl~cait~ons -involvin 'g data prediction. L~e he :ii

to understand pprocesses, however, linear na.t.±4 s can be

deceptive. For instance, synergistic processes can be easily misinterpretk-,

as being additive if linear models are used exclusively in data analys-s

(for an actual example, see Shanteau, 1977).

The present findings extend the arguments against tU~ routine use C

linear models in two ways. First, even the predictive use ".

can be questioned when, at best, "he loss in variance-accoanted-for i

At worst, a linear model can account for only half of the systematic w

Moreover, in all cases, the loss in variance-accounted-for was signifxcant

when a linear model was used. Of course, whether losses of this magnitude

are within the realm of a "good approximation" might still be subject to soma

debate. Nevertheless, the present findings suggest that the preaictive

ability of linear models should not be uncritically accepted.

Second, previous evidence against linear models, such as that offered

by Anderson and Shanteau, has been primarily based on analyses of variance

applied to orthogonal designs. The results offered here demonstrate that

synergisms also make an important difference in regression-based analyses

of nonorthogonal designs. Thus, neither tle type of statistical analyb.s

nor the experimental design are relevant to the argument that linear modeI;

can be misicading when applied to :;yner;istic data.

We:igt: zor linear :,.odels. Several recent papers have pointed out h

prcvioLIu arguments about the in:i;nsitIvity for weights for linear models

may be inappropriite. Previously, investigators such as Wainer (1976), asp

well as Dawes and Corrigan (1974), had argued that equal weights (or even

rarlom weights in some circumstances) can do <aut as well as optimal weights
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in li ear i)ic di.,. iLowv lr , Ncwman (:977) demonstraLcd t.,.,L, .. .

weights can provide ;oo2 approximations when cues arc- positively curre- ,t-,

equal weights are generally inferior when cues are negatively correlated.

Thus, previous arguments about equal weights in linear models apparently

cannot be generalized to conditions of nepatively-correlated cues (.sio

see John & Edwards, 1978).

The results here expand and complement the finding, of Ne-wma.; (-97"'.

While Newman was concerned with showing that weights in a _nea ,

matter for negative intercorrelations, the present results show that mcl

form also matters. Thus, when cues are negatively correlated, neither

the weights nor the form of the model should be taken for granted.

Positive-vs-negative intercorrelations. Since negatively intercorreol-

tions produce such different results, it is appropriate to ask about the

conditions under which such intercorrelations might be observed. Perhaps,

negatively correlated cues are relatively rare in reality and so would not

be much cause for concern. After all, perceptual judgments for instance

are made in the context of numerous largely redundant, i.e., positively

correlated, cues (Brunswik, 1956; also see Hammond, 1981).

However, negative correlations may in fact be the rule not the

exception in decision making. Many decision problems are only problems

because the cues are inversely related. For example, selecting a new car

would be trivial if the attributes were positively correlated, i.e., if the

cheapest car was also the best looking. In reality, however, such a car

does not exist and instead we are forced to make tradeoffs between conflic-.,

attributes. Thus, negative intercorrelations will be found precisely in

those situations where decisions are most likely in reality.

A more elegant discussion of the role o. negative intercorrelations can

be found in McClelland (in press). He shows that if the set of altcrna~ivec"
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is restricted to those tliaL are nondominLted, i.e., on tie 1r

frontier, then the cues will necessarily l)e negatively correiated. %hI

only by including dominated alternatives can a set have anything but

negatively correlateci cues. Therefore, excluding inferior alternatives

produces negative intercorrelations.

Moreover, decision situations involving negative inercrrcm.-

also quite likely to lead to synergistic processing rules. For ins ,,_'.

in risky decision making, payoffs and probabilities are ge. !ra~i- :,

correlated, i.e., high payoffs have low probabilities and low payoffs :..c

high probabilities. Further, both the optimal decision rule (Eawacd , .

and the strategy generally used by subjects to make risky decisions (S. .

1975) involve the multiplication of probability and payoff. Simiiary,

synergistic rules are likely to be found in precisely those conditic:. w-:..

negative intercorrelations are observed (Hammond, 1981).

Another way of looking at positive versus negative correlations is in

terms of the assumed resources available. 'In a world involving positively-

correlated attributes, there is no implied limit on resources, i.e., it is

theoretically possible to get the most on all attributes at the same tLime.

Thus, positive intercorrelations suggest an unlimited-resources view of the

world. In contrast, negatively-correlated attributes imply a limit on

available resources, i.e.,it's not possible tosimultaneously get the mo-;,,

every attribute. This latter view may be much more reasonable in a worl.

that, in fact, requires choices involving limited resources.

Statistical Issues and Synergisms

For purposes of detecting synergisms, two findings at a statistical lcvc

-4 stand out. The first concerns the comparison of various statistical ina&cL.

The second relates to experimental design ane the influence of atypical sLiMulus
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sets. The implications of each Of tL1Lse fLndins will be d

section.

Comparison of statistical indices. As can be seen -n the figure-, :h,:

various indices were all sensitive to some extent to the presence of a

synergism. Regardless of the index, the values were uniformly higher when

the "correct" regression model was appliec to synergisLIc uata. This .

true across all intercorrelation values and across the two stir.uius se

sizes.

In practice, however, several of the indices in common use may prcvl:c

uncertain information about the presence of a synergism. For instance, a

R2 value of .70 for the fit of a linear model may look good--until it i

discovered that a multilinear model leads to a R2 value of .75 for the

same data (these values are taken fron Figures 1 and 2). The difficulty

with indices such as R2 (and other correlation-based measures) is that

it is impossible to know by looking at a single value whether the fit is

good or not. Only by comparing the fits for various models can any evaluative

statements be made.

Unfortunately, comparative analyses using alternative models are seldom

performed. Worse yet, there is no limit to the number or variety of alternative

models that might be considered. In short, measures such as R2 do not

provide an adequate basis for detecting synergisms (also see S'anteau, 1977'.

Other common descriptive measures, such as the size of the regression

weight for the crossproduct term, are also inadequate. The problem is

that when cues are intercorrelated, the order in which the analysis is

conducted can influence the size of the weights (Darlington, 1968). This

means that the size of the weights depends on a variable that is under dircct

control of the investigator. Thus, regressior weights provide an uncertain

indicator of the presence of a synergism.



Detection of Synergisms

29

Thu only ,ic;s-ri-ptive measure ti,it can be recoru~nd .d on ..
of te simlations here is AR 2 . Thi: measure, obtained fro i the differenc,

in fit of linear ani nu1L2linczr ndels, was gunerailly sensitive Lk,

presence of a synergism. In addition, the hierarchical test discussed

pbelow provides a test of significance that is related to this measure.

Therefore, AR2 would be the preferred descriptive index.

The present results, therefore, show that some widely used me-sur..

regression analyses are not suitable for detecting synerg, -s. T

well explain why synergisms have been so infrequently reported in previcuc

analyses of nonorthogonal designs. in contrast, numerous instances of

synergisms have been found in studies involving orthogonal designs (e.g.,

Shanteau, 1981).

Of the inferential indices considered here, the measure of choice

appears to be the hierarchical te.:t proposed by Cohen and Cohen (1975). The

test correctly detected thE. presence of synergisms in all the 100 stimulus-

case conditions. A slight decrement in detectability rates was observed for

the 25 stimulus-case conditions. But even at its worst, the hierarchical

procedure detected 75% of the synergisms (see Figure 7). Equally important,

the false-alarm rates for the hierarchical tests were consistently below

10%. In short, the hierarchical test was quite sensitive to the presence of

synergisms.

The hierarchical procedure has been advocated (Arnold & Evans, -979)

precisely because of its potential for evaluating multiplicative componcnln.

A problem in previous regression analyses has been how to analyze multilinear

models when the independent variables are not measured on a ratio scale.

In those cases, an additive component is introduced into the regression model

and direct tests of the crossproduct may not c revealing. However, as

I I
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shown hcce th, tho pris eL1 oi an additjve r- has little influen- c-. the

hierarchical teC;t resto Ls (see Figures 6 and 7). Thus, the present recom-

mendation would be to include routineiy LR2 and the hierarchical procedure

in multii k-regression analyses of judgmental data (also see Stahl & Harreil,

1981).

In contrast, the lack-of-fit test is notable because of its poor

performance. Tiemajor problem appear.; to be an overly large sensitivity to

nonexistent deviations from the multilinear model. Of cour , it's possfih>

that the inflated detection rate may be due to some facet of the present

simulation analyses. That is, would real data produce a better-behaved test

statistic?

To examine this question further, it is worth considering the study by

Shanteau and Nagy (1979). They applied a comparable lack-of-fit procedure

to test the adequacy of a multilinear model for dating decisions. The model

described the data quite well and was highly accurate in predicting actual

dating choices. Despite the apparent good fit it, however, the lack-of-fit tests

revealed significant discrepancies for over two-thirds of the subjects.

Additional analyses revealed no discernable locus to the discrepancies, and

the -deviations seemed to be quite small. It thus appears that the test is

overly sensitive to small deviations in real data. Taken together with the

simulation results, it would appear that until more is known about the propeorties

of the test, it cannot be recommended for regular use.

Idiosyncrasies in nonorthogonal designs. Perhaps the most unexpectea

finding to come out of the simulations was the occasional occurence of an

atypical stimulus set. What made this so surprising was that all stimulus

sets had to pass a number of stringent qualification tests before being accepted.

The goal was to produce stimulus sets that were as homogeneous as possible.
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Yet, one or two atypiczl sets were found in narly every co. .

other differences, such sets led to nonconforming results concernce, t;e

sensitivity of various indices to the presence of a synergism. What thl..

means is that the ability to detect a synergism depends on the particular

stimulus set selected.

Of course, it is possible that even more stringent qua.iifcauic.; .

would have led to more homogeneous sets. Indeed, based on ninasight, ::wny

of the present atypical sets could have been eliminated - ch. kinj, L.

variability of the expected (pre-error) response values. Howevar, .

stricter selection criteria would not be feasible on two grounds. First,

at a practical level, nonorthogonal designs are frequently used in rese arch

settings which have little or no flexibility. For instance, a marrctngc

researcher has little if any control over the product alternative set.

In such settings, the researcher may have no choice but to use the available

stimulus cases.

Second, at a theoretical level, unless the stimulus sets are identical,

they can never be homogeneous for all purposes. While it might be possib'e

to construct qualification tests to insure that the stimulus sets are

equivalent in regard to detecting synergisms, the sets might still be

dissimilar for other purposes. That is, there is no way to select st:nm"ius

sets that are homogeneous for all applications. Moreover, since many

analyses are impossible to anticipate, there is no way to preselect stinr.u.;

sets. In short, it is not feasible to develop a general-purpose u

procedure.

The inability to develop general preselection criteria means that a

researcher can never be certain whether a particular stimulus set is atyp~cal

or not. As the present study demonstrates, even using as many as 100 stimulus
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cases is no protL'c'L o1 (soc T,, 3). Thi) mears- t: i irt L ( :.-rc ..

even fairly lar,,,e de, ,.. r':Iy nc,L , .rali:.. "Cnfo r.n C ., t:c v..-.

of atypical stiimulus -.ct :; -aiso.; ques, ions about the gcnc:-, Iizabilit, of

many previous results obtained using nonorthogonal designs.

There are at least three options for illeviating the prob]om of Lc, af

generality. The first option is to replicate all findings using a'i::.

nonorthogonal designs. This would greatly minimize, but inot eli:,.. c,

possibility that the observed results will fail to replicate >cc-uni of L.

atypical design. While such experimental replications are or course .

desirable, they may be impractical in many settings.

Second, there are many investigations in which orthogonal (factor-ial)

designs might be used instead of nonorthogonal designs. Factorial desi.2n.,

avoid almost all of the problems discussed above for nonorthogonal sti, 1u.

sets. Specifically, factorial designs lead to optimal parameter estimates

and model tests. While factorials do have shortcomings for judgment research,

the disadvantages have frequently been overemphasized relative to the

advantages.

The final option is to pretest the nonorthogonal design using the types

of simulation analyses performed here. That is, the anticipated behavioral

models, along with the method(s) of analysis, can be simulated in adv.ance.

In this way, the suitability of the stimulus design for answering the resuerch

question(s) can be established a priori.

The Role of Simulation Analyses

There are both important advantages and important disadvantages to the

use of simulation analyses to study issues such as synergisms. On the positIve

side, simulations allow the study of psychological problems that would bu

intractable using an empirical approach. On -,,. negative side, any simulation
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is only a: s a ts assumptions -Ind some of the ass.;p Ltior....... , .C

certainly be quCe;Lion('d. Before considering these pluses and minuce.. ,r.

detail, there are 6o;iie important distinctions that need tinphasis.

Simulations as a psychological research tool are hardly unique. There

are numerous applications in the liL4rature of useful simulation analybes.

For instance, computer models of subject behavior have been frec'ukntl . .

to analyze cognitive processes in problem solving behavior (e.g., Newell,

Simon, 1963). Similarly, Monte Carlo simulations have loC. ben useG .o

analyze the properties of various statistical procedures (e.g., in -_,

1953, pp. 78-90).

6 What separates the present approach from these earlier simulation

analyses is the effort here to simulate all stages of an experiment.

As outlined in Table 1, the three-part approach involves separate simulations

* of environment, behavior, and analyses. While prior approaches have concen-

trated on simulations of behavior or analyses, the present approach is to

view the research process as a whole. Therefore, these three elements

I are all included in what might be termed an experiment-simulation. The

advantages and disadvantages of this approach will now be considered.

Advantages. There are at least four advantages to experiment simulations.

The first is thatitispossible to address research questions that could not

be practically investigated in any other way. The present study, for

instance, involves 1,620 separate conditions. To run even one subject In each

of these conditions would clearly be prohibitive. Thus, studies that wou..e

be impossible to conduct empirically can still be approximated through exNc4m_-

ment simulations.

A second advantage is that, with the present approach, the "truth" 

always known. That is, the true state of the environment, the true behavioral
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model, and tho true analytic answer are always; know--. Kn,..:

"truLll," aliows a number of analyses to be perforr,' L ; .I Cu., !-.t !C

conducted otherwise. For instance, various designs, modL1s, aad ana'y-_

techniues can be directly compared because the correct answers arc

known. Therefore, the researcher is in the highly en, Ldble pos.t2c;.

knowing the truth at every stage.

The third advantage is that experiment simrun .,to car, r sed to

generate more prec.Se empirical investigations. That , si:.2t.,O..

point out research issues and areas where empirical reaearch is lackir..

For instance, some marked differences between positive and negative .neoccr-

relations conditions were demonstrated in the present simulations. nowever,

there is as yet relatively little empirical evidence to demonstrate how

subjects respond under the range of conditions studied here. Its not even

clear whether subejcts would use synergistic rules under all intercorre> tio3n

conditions. Empirical research is clearly necessary to answer such queszions

generated by the experiment simulations.

The final advantage is that experiment simulations can be employed

to investigate entirely new research issues. Problems which not have yet

been considered may be highlighted by performing a simulation. In the

present study, for example, the location of the error term in the subject's

model became a major issue. Yet, because no prior research was availale.,

this issue could not be addressed empirically. However, synergisms provla

a unique opportunity to separate stimulus error from resonse error ana,.

investigate the relative magnitude of each. Thus, experiment simulations

have helped to focus attention on a new and potentially quite interestn,

research issue.

9
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P2i o'.v ' . Tlkere are Lwc, noteworthy pr'obi:z in the - :y.

sinu]aLion approach used herr. The first is that ther,! is no criterion for

whether the simutLatLLon; a-e SLUccessful or not. While the results produced

look reasonable, that is no assurance that there are not importantdifficu. --s.

As a check, what is needed is to compare some of the present findings

against specific empirical results. Until such checks have been arfur.c1

there is always the possibility that the present simulations may be .

to empirical reality.

A second disadvantage is that this or any simulation is only

as good as its assumptions. If the assumptions are faulty, then so necessarily

will be the results from the simulation. In the present three-stage approach,

there would seem to be relatively little cause for concern in regard to the

simulations of the environment and the experimenter. The assumptions made

for these stages were largely noncontroversial and in line with standarc

research procedures.

The status of the subject simulation is not as clear, however, since

several rather arbitrary assumptions had to be made. Most notably, the way

in which error was incorporated may be a special source of concern. As

noted above, there is little empirical evidence in the literature concerning

how error enters into a subject's behavior. Without such evidence, there

was no choice except to make some "seat of the pants" assumptions. Specif:c.iily,

it was assumed that error enters in after the stimuli have been combined

that the coefficient of variation provides a useful rule-of-thumb as to

6
the size of the error component.

While these assumptions led to reasonable-looking data, they are

certainly subject to further analysis. Additional simulation and empirical

research can be used to investigate error in more detail. Simulations can be
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C)- ONe,, for- 2 -,: :inc2, LO cxplorc al turn:Liivo assumptions a.,. ..

And cmpirical rese.irch, as noted above, can be directed at such issuc6 as

the size and location of error. Thus, the simulation approach taken 1o1re,

while not without its problems, has raised some interesting questionb and

suggested some new directions for future research.

p

I
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1The data for each simulated subject were created by randomly perturbilg

the Y' values to generate two response replications, YI' and Y These two

replications represent responses obtained from two independent presentations

of the stimulus set to a subject. The reason for haviag two replications

is that one of analyses required a separate estimate of error; such estimates

can only be obtained by having response replications. For analyses which

do not require independent error estimates, the Y ' and Y 2' values were

averaged to produce Y' values.

2Ken Hammond (personal communication, 1980) has indicated that similar

differences have been observed in analyses run for other purposes. Moreover,

the downward trend for the adding-model results across negative intercor-

relations is also commonly observed. Thus, the present results are apparently

in line with results found in other settings.

3To illustrate the effect that a reduced range can have on detecting

sytiergism, cunsider the following two stimulus sets: In set one, the paired
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cue values are (1,5), (3,5), (5,5), (7,5), and (9,5). In set L' . e cue

values are (3,5), (4,5), (5,5), (6,5), and (7,5). Looking at just The

first cue, thecmeansare obviously equivalent in the two sets, but the

standard deviation for set two is less. (Note that setting second cue

to 5 is for simplicity and convenience; however, it does not effect the

generality of the argument in any way.)

If a multiplying model (Equation 2) is applied to set one, the (crroric )

data will be 5, 15, 25, 35, and 45. If an adding model (Ec-iti-n 3, s .;

to the same set, the data will be 6, 8, 10, 12, and 14. The sum-of-squarec

2 > 2 2 2
deviations between the models is 1 + 7 + 15 + 23 + 31 = 1765, with the

major difference between adding and multiplying occuring at the upper

end. For set two, the data for the multiplying model is 15, 20, 25, 30, and

35. The data for the adding model is 8, 9, 10, 11, and 12. The sum-of-

squared deviations is then 72 + 112 + 152 + 192 + 232 = 1285, or 480 less

than in set one.

Two points are worth emphasizing. First, the range of the data is

considerably larger in set one than set two. This, of course, follows

directly the construction of the stimulus sets. Second, the difference

between adding and multiply is less in set two than in set one. Assuming

comparable error values, that implies that detecting the synergism in

set two will be more difficult.

4There is an interesting asymmetrical relation between intercorrelational

values and conditional monotonicity. If the cues are positively correlated,

then if one cue is conditionally monotone so must be the other. If the cues

are negatively correlated, then if one cue is conditionally monotone in one

direction the other will be conditionally monotone in the opposite directior.

Thus, knowledge of the intexcorrelation value -1lows inferences to be drawn

about conditional monotonicity.
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However, knos'i n that ench cu- is conditionally :uoone ,, ..

any restrictions on the intcrcorrelatiork values. In fact, two cues can

both be conditionally monotone in the same direction and still be highly

negatively correlated. Thus, statements about conditional monotonicity

do not allow inferences to be drawn about cue correlations.

5Factorial designs have frequently been criticized on the ground!: ,ha

(1) they are unrepresentative (Brunswik, 1956), and (2) they frequently

require too many stimulus cases. However, both of these criticisms cL'n b

met by the use of fractional factorial designs. Such partial designs allow

for both reduction in the number of stimuli and control of unrepre-

sentative stimuli. Some illustrative applications of fractional designs

can be seen in Phelps and Shanteau (1977) and Slovic (1969).

It is noteworthy that most judgment researchers are aware of the

difficulties of nonorthogonal designs. For instance, the problem of

estimating weights with intercorrelated cues is well known. However, instead

of turning to orthogonal designs, many researchers have used nonorthogonal

designs with zero intercorrelations. As the present results make clear,

the .00 correlation condition shares many of the same shortcomings as the

other conditions. Also, it is not clear how using uncorrelated stimulus

cue sets can be any more representative than using factorial designs.

6As an aside, some comment should be made about the possibility of

normalizing all the data to cover the same range. Normalization has the

advantage of allowing the same size error term to be used with the three

data-generating models. Then, a sinle treatment of error could be applied

* to all three data sets.

While this approach seems attractive in theory, there are two practical

'1 problems. First, the pre-error data did not cover any consistent range of
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ki& . 'ihaL is,, duo to randon-ness ii the construction of the stimu. ,

and the restrictions necessary to satisfy the constraints of intcrcorrvflat .'.-.

value, etc., the various data sets differed widely in their range. Thus,

even if the same data-gec2rating model is used, that is no assurance that

the resulting data will I ave similar ranges. Therefore, normalization using

the range (or any other sample statistic) would not lead to equivalent

data sets.

Second, even if the data could somehow be normalized o-. range, anocthe:

problem remains. The distribution of the data varies systematically bDt'Wc-.

the three models. For the adding model, the data is symmetrically distrbuueo

around the midpoint of the range. Huwever, for the multiplying and adding-

multiplying models, the data is skewed towards the lower end of the range.

This asymmetry is a direct consequence of the multiplying operation in that

a high response car only result form the multiplication of two high cues;

otherwise, relatively low responses will result. Thus, the use of a

constant error term would have dissimilar effects on range-normalized data

for the three models. Proportionally, the error contribution would be less

for the adding model than for the other two models.

Because of such difficulties, it was decided not to normalize the

data values. Instead, the error component was individually calibrated

to match each data set. To reflect both range variation and distributional

differences, error was made proportional to the coefficient of variation.

Since this coefficient depends on both the mean and the standard deviation,

it avoids most of the problems outlined above.

L



Detection of Synergisms

45

u

0 4)Q) 0

W) IC 0 - n

C: 0 4) $w 0 -
W) 0) -40 Z 5.. CO $

CO 44 4) $4 V4 .- 1 04) u 00
a* 0 U, 0 0 w- w' 0 r .

,4 '-3 0 r. 1" 4) "0~ 0 "4 $
u (V 4) x4 Q) w41 cV- -H 0

4) ~: 0~ 0 QL. ) .4 ~ -<',3 . U0j1
u H ~ - * - . 1 0 Q0 C44 0- $)44 -H4 =

0 W";> U'4C. -U H. to. 1CJ) 7.-..*4

o m~j4 mV~ > z.- 0 ad) 0 0
X 4) Oz a)H 4'' ~ 0.1 s,~ $4

u ,4. Q)l- bc m.4 ~ ~ 44 **~Q X~

$0 0 4- 0 -.. '0 4 Z C~- C c
0-'- 0 C4 1. b ~0 4-4 .,4 r,-,~C L.- 0
1-.4q4) ~0 to 0d~ P.) 4 -4 0004) CV

4) wE 101 "4 0 u N r4r) .C a V; UC C
>1 r-4) 4-j-4 =0 0 0 -Q -4~ :3 N C-4 E U 

4

0o-. z qz 9)i j~ a-2) z~ X P -4~ P

4

41

U)

04 P. V.5

$4

$4 4J $4 0 0 0
0~~. w 4 41

0 0 0)UU)5 0 ) 4

0 A4 4 440

*4 1. 5'0 0 0.

0 0-4.J 0 -H

4)~~~ 4100 V 0 )
U ~ ~ ( 0m- -

o .- E-40 t.4

Q 0 541-

C:U 0 -q U 4
04 $4 Z U QU)()

4))



Detection of SynergK.-

46

Table 2

Illustrative OuLput From Stimulus Construction Programa

Parameter Requested Observed
Specified Value Value

Number of Cues 2 2

: Number of Stimulus Cases 100 100

Minimum Value, Cue 1 1 6.4
Maximum Value, Cue 1 100 100.0

Minimum Value, Cue 2 1 2.0
Maximum Value, Cue 2 100 97.4

Mean, Cue 1 50 49.9
Standard Deviation, Cue 1 20 19.6

Mean, Cue 2 50 50.1
Standard Deviation, Cue 2 20 19.7

Chi Square Distribution Test, Cue 1 - 12.4
Significance Level (df = 19), Cue 1 3.05 .87

Chi Square, Distribution Test, Cue 2 - 18.4
Significance Level (df = 19), Cue 2 >.05 .50

Intercorrelation Between Cues 1 and 2 0 .00

Stimulus Case Numberb Cue 1 Cue 2

10 67.4 44.3
20 45.5 77.2
30 57.6 24.0
40 23.4 58.7
50 76.2 44.7
60 31.2 12.4

70 51.1 87.0
80 36.5 22.9
90 54.8 19.3
100 95.8 2.0

aoutp)ut adapted from CUECEN program (see Kaiser & Dicknan, 1962; Naylor,

et al, 1965).

b Every tenth case selected for illustrative purposes.
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Figure Caction;

Figure 1. Av, R2 values for the fit of a linear regression model

(Equation 7) to three data-generating models: (0) a ..iultiplying model

(Equation 2), (1) an adding model (Equation 3), and (2) an adding-multipiyin-

model (Equation 4). (Left panel = 25 stimulus cases, right panel = 100

stimulus cases.)

Figure 2. Average R2 values for the fit of a multilincir regression

model (Equation 8) to three data-generation models: (0) multiplying,

(1) adding, and (2) adding-multiplying. (Left panel = 25 cases, right

panel = 100 cases.)

Figure 3. Average improvement in R values for a multilinear regression

model over a linear regression model for three data-generating models:

(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panel=

25 cases, right panel = 100 cases.)

Figure 4. Average standardized regression weights (a) for crossproduct

term in the fit of a multilinear model to three data-generating models:

(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panel = 25

cases, right panel = 100 cases.)

Figure 5. Proportion of significant regression weights for crossproduct

term in the fit of a multilinear model to three data-generating models:

(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panel = 25

cases, right panel = 100 cases.)

Figure 6. Average F-ratios for hierarchical test applied to three

data-generating models: (0) multiplying, (1) adding, and (2) adding-muitiply1ngi.

(Left panel. = 25 cases, right panel = 100 cases.)

I -
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Figuire 7. P'i-oportion of significant hierarchical tests fur chrfu

data-generating models: (0) multiplying, (1) adding, and (2) adding-

multiplying. (Left pancl = 25 cases, right panel = 100 cases.)

Figure 8. Average F-ratios for lack-of-fit test applied to three

data-generating models: (0) multiplying, (1) adding, and (2) adding-

multiplying. (Left panel = 25 cases, right panel = 100 cases.)

Figure 9. Proportion of significant lack-of-fit tests for three

data-generating models: (0) multiplying, (1) adding, and (2) adding-mulzilying.

(Left panel = 25 cases, right panel = 100 cases.)
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Appendix

Two of the major components of the present simulation analysis desrvu

greater claboration. The first concerns specifica. :1 of the CU1.GEN pgrc...

used to construct stimulus cases. The second involves discussion of Le

various statistical procedures used to anaiyze the data. Each of thes.

will be addressed in following supplementary material.

CUEGEN Program

This program is based on procedures described in Kaiser and Dick..;an

(1962) with modifications outlined in Boyle (1970). Relevant prograimcing

information can be found in Naylor, Balintfy, Burdick, and Chu (1965).

Additional modifications were incorporated especially for this research project

by Michael O'Reilly.

Program description. CUEGEN will generate sample stimulus cases which

will approximate user specified values for the means, standard deviations,

and intercorrelations. The sample cases will satisfy with maximulm accuracy

(in a least-squares sense) the specified values within the limits of computa-

tional accuracy, computing time, etc. The user may also specify either a

uniform or a normal distribution and this property will also be maximally

satisfied within limits.

The algorithm used by CUEGEN starts with the desired (population) cor-

relation matrix. Through the use of component analysis, random sample

matrices are generated from the population correlation matrix. If a sample

matrix does not meet the intercorrelation requirements, then adjust-

ments are made in the elements of the matrix to bring it more in line with

the requested matrix. Once a satisfactory sample correlation matrix is

achieved, linear transformations are applied to produce the desired means and
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arv* statistical I c- ind , -;n: ple i..tri: i s $- td,- i f Inv cr<.

is not satisfid -t th .05 level

Technical descr>nrion. The remaining materiai provides a more te",hnical

discussion of the CLIlGEN program. A funtanental postulate of componeunt

analysis states that:

Z = F X,

where F (or order n x n) is a factoring of R, the desired -orreiarion .atrx,

and X (of order n x n) is a population matrix derived fron the component--

in F. The program begins by generating an arbitrary X, sampling randomly

from uncorrelated populations with any distribution and with zero mean and

unit variance. Then

SZ= F X

can be found, where Z represents a matrix of observations from a multivariate

population with zero means, unit variances, and correlations R.

If the absolute correlational error is larger than some acceptable

value, then an element of Z is chosen at random and adjusted by a preset step

(default value of 1.0) to reduce the error. The direction of the adjustment

is chosen by examining the effects of the change on the correlation matrix.

The process is repeated (within specifiable limits) until the desired

intercorrelation values are obtained. Finally, the rows of Z may, if

necessary, be linearly tranformed to reflect specified means and standard

deviations.

It is possible for a user to request a pattern of properties which, ux':f

analysis, leads to a correlation matrix which is non-Gramian. To produce

a correlation matrix most like the specified correlation matrix, negative

eigen values (if any are found during the C-.°-.aian factoring) are set to zero.

9k
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e pro2'j-.11 c in ,,eneratut stimuli,:; cases hav.Ln , either . , or:2 or

nornia] distributioi. (onsequently, a test of distribution is performed by

suLtii., up equ:iI prob.ibility intervals. A chi-squatre Le-,t is used tc,

compare the actual number of cases in each interval with the expected

number. Sample matrices which fail the distribution test are randoml'

altered and reentercd into the program as necessary (default value of

5 reentries). More information on this or any of the other program.s is

available upon request from the author.

Statistical Procedures

A number of statistical procedures were evaluated in the researcher

simulation stage. Some of these indices were discussed in detail in the

text (e.g., R2 ), while others provided redundant information and so were

not discussed (e.g., r). In the following material, the descriptive indices

will first be described followed by the inferential indices. (Except for

the indices which are not widely known, the computational formulas have

been omitted.)

Descriptive indices. (1) Probably the simplest of the descriptive indices

is the ordinary product moment correlation coefficient, r, between the set of

predicted values, Y, and the set of observed values, Y'. (2) A closely

2
related measure is the squared multiple correlation value, R , which describes

the variance-accounted-for by a given multiple-regression model. (3) Based

on the R2 values for the separate mulLiple-regression models, a AR
2 can

be obtained from the improvement in variance-accounted-for in going from

a linear model (Equation 7) to a multilinear model (Equation 8).

This reflects the increase in from adding a crossproduct term to a line.,r

model. (4) For the two regression models with crossproduct terms (i.e.,

Equations 6 and 8), the unstandardized regres .on weight, b, can be obtained

for the X x X 2 terms. (5) Similarly, the standardized regression (Beta)

weight, 8, can be evaluated for the crossproduct terms.
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(6) Using the derived regression values, Y, the differc I-,

derived and observed values, Y', can be summarized by ,.onn-nbsn11:t(-

deviation (MAD) scores. (7) The same comparison can be made in terns of

root-mean-squared deviations (RMSD). (8) The data generated by the various

response models can be described by means, and (9) staniard deviations.

(10) Finally, a coefficient-of-variation (standard deviation tmean) ca:. be

easily computed from the preceeding measures.

Inferential indices. (1) The significance of the on

weight (computed in step 5) can be determined for the crossproduct terms in

Equations 6 and 8. (12) The hierarchical multiple regression approach (Cohen &

Cohen, 1975, chapter 8) is based on testing the improvement in R
2 in going

from a linear model to a multilinear model (see step 3). The computation

formula used was:

F = (R
2
8 - R27 ) (N - k 7 - k 8 - 1)

(1 - R28 ) k8

where R28 and k8 refer to the variance-accounted-for and number of independent

variables added (=I), respectively, for the multilinear model in Equation 8.

2
R 7 and k7 (=2) are the comparable values in Equation 7. The F-ratio, based

on k8 , (N - k7 - k8 - 1) degrees of freedom, can be tested directly for

significance (see Arnold & Evans, 1979, p. 44).

(13) The lack-of-fit test (Draper & Smith, 1966, sec. 1.5) is based

on splitting the residual sum-of-squares (SS) in a regression analysis into

two parts: a lack-of-fit SS and a "pure error" SS. The F-ratio for lack-of-

fit can be computed directly following standard analysis-of-variance logic.

(14) To obtain an estimate of pure error, a complete repliation of the daLa

was generated. The difference between the replications, YI' and Y 2 '' provides

an independent error estimate for use in tne lack-of-fit test (step 13). For

all other analyses, the difference in the replicates was ignored (see footnote

I for further detai1).
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